Project Nema: Genetically Engineering the Next Generation of Plastic-Eating Decomposers

We humans are really bad at cleaning up after ourselves.

With over 5 trillion metric tons of plastic polluting our world, only 8–9% of it gets recycled. 3.1 million tons of PET (polyethylene terephthalate), a commonly used plastic polymer, is produced every single year, leaving a total of 3 trillion tons of plastic in Canada and the US alone.

Figure 1: Ways we break down plastic (burning and microplastic)

The Ideonella Sakaiensis Bacteria

Figure 2: The ideonella sakaiensis bacteria

How does the bacteria do this?

Well, the bacteria produce two enzymes (PETase and MHETase), each focusing on a specific task.

The first enzyme, PETase, cuts the polyester polymer of which PET is constructed into smaller pieces. During this process, PET is converted into mono-(2-hydroxyethyl) terephthalate acid (MHET), terephthalate (TPA), and bis(2-hydroxyethyl) TPA (BHET).

Then the second enzyme produced by ideonella sakaiensis, MHETase, comes into play. This enzyme converts the MHET into ethylene glycol and TPA. — (University of Denmark Education)

Note: PET & PETase and MHET & MHETase are all different substances/enzymes.

Figure 3: Visual representation of the two-enzyme system

Why aren’t we using these bacteria?

So, if this bacteria can break down plastic, why aren’t we already using it to fix this problem?

A bit about Gene Editing

Figure 4: Visual Representation of gene editing

Why Nematodes

Figure 5: Image of nematodes

Genetically Engineering the Nematodes

We will be using this CRISPR system to isolate the non-coding intron of a gene in the Caenorhabditis elegans nematode and replace it with the ideonella sakaiensis bacteria instead. Since this is a germline gene, the bacteria will be passed down to future nematode generations, which will ultimately allow the nematodes to gain the ability to break down plastic, without performing any edits! Allowing for exponential growth!

Editing Nematodes through Food

What if instead, we could get these nematodes to eat the bacteria…


Liposomes are (spherical) vesicles used as a drug delivery vehicle for the administration of nutrients and pharmaceutical drugs, such as lipid nanoparticles in mRNA vaccines, and DNA vaccines.

Figure 6: Visual Representation of a liposome

Our Vision for the Future

With this global plastic problem, we can see the world turning into a dystopian one all because we didn’t take care of our environment properly. There would be more people dying, more people getting sick, less food to go around, etc.

15 y/o AI/ML Developer | Currently diving into the neurotech space | 🥯🚚